CHEMISTRY OF 2-SUBSTITUTED THIOTHIAZOLINE. III.¹⁾ REACTIVITIES OF DIANION OF 2-PROPARGYLTHIOTHIAZOLINE AND RELATED 2-ALKYNYLTHIOTHIAZOLINELITHIUM DERIVATIVES

Koichi Hirai and Yukichi Kishida Central Research Laboratories, Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, 140, Japan (Received in Japan 4 April 1972; received in UK for publication 18 April 1972)

In a previous communication we reported a new squalene synthesis using 2-alkenylthiothiazolinelithium derivative.^{1b)} We now wish to report the reactivities of dianion of 2-propargylthiothiazoline and related 2-alkynylthiothiazolinelithium derivatives, and a new and versatile synthesis of 1,5-diyne systems using these alkynylthiothiazolinelithium derivatives.

2-Propargylthiothiazoline (I) $\left[82^{\circ} / 0.02 \text{ mm. IR } \mathcal{Y}_{\text{max}} \text{ (film) } 3280, 2100, 1570 \text{ cm}^{-1}. \text{NMR}^{2} \right] \delta$ 3.25-3.65 (2H, almost t.), 4.05-4.45 (2H, almost t.), 2.25 (1H, t., J=3.0 Hz, <u>H</u>-C=C), 3.90 (2H, d., J=3.0 Hz, -S-C<u>H</u>₂-C=C) was prepared easily by treating propargyl bromide and commercially available 2-mercaptothiazoline with triethylamine in tetrahydrofuran³). The dilithiation of I was smoothly effected by adding two equivalents of <u>n</u>-butyl-lithium at -60° in tetrahydrofuran under a nitrogen atmosphere (Chart 1). After twenty minutes one equivalent of phenylpropargyl bromide (R=C₆H₅, X=Br) was added to a suspension of the white precipitated dilithium salt (II) by a syringe at the same temperature. The temperature was gradually raised to 0° and then ice water was added. Extraction of the product with ethyl acetate and evaporation of the

Chart 1

2117

solvent after usual work-up gave a thiothiazoline diyne (III: $R=C_6H_5$) $[Rf=0.54]^{4}$ in 60% yield as a mixture with some starting material (I) [Rf=0.45]. After separation of the mixture by silica-gel column chromatography the product was identified as 2-(1-phenyl-1,5-hexadiynyl-4-thio)thiazoline (III, R=C_6H_5) by the following spectral data: IR \mathcal{V}_{max} (film) 3280, 2100, 1595, 1570, 756 cm⁻¹. UV λ_{max} (EtOH) 242 and 253 nm. NMR δ 3.12-3.52 (2H, almost t.), 3.95-4.35 (2H, almost t.), 2.48 (1H, d., J=2.5 Hz), 4.76 (1H, d. of t., J=2.5 and 5.9 Hz), 3.07 (2H, d., J=5.9 Hz), 7.2-7.5 (5H, arom.). M^+ at m/e 271 ($C_{15}H_{13}NS_2$).

It is noteworthy that the alkynylation occurred exclusively at the α position with respect to the sulphur atom and that any other type of product including allenic ones could not be detected⁵⁾. This would be attributed to the five-membered chelating ring effect (<u>i.e.</u>, II) as pointed out previously $1^{1b,6}$. Representative examples of the alkynylation (or alkylation) are shown in Chart 2 and Table I.

Chart 2

		Table	I		
R	R'X	Yield % (isolated)	R	R'X	Yield % (isolated)
а. Н	C ₆ H ₅ C≡CCH ₂ Br	60	i. C ₆ H ₅	C ₆ H ₅ CH ₂ Br	50
ь. Н	HC=CCH2Br	50	j. C ₆ H ₅	CH3I	45
с. Н	$C_6H_5C \equiv CCH_2Br$	50	k. CH ₃	$C_6H_5C \equiv CCH_2Br$	48
d. H	${\rm H_2C=CCH_2Br}$	35	1. CH ₃	$C_6^{H_5}C^{H_2}B^{r}$	48
е. Н	$C_6H_5CH_2Br$	65	m. CH ₃	CH ₃ C≡CCH ₂ Br	42
f. H	CH ₃ I	60	n. CH ₃	H•C≡CCH ₂ Br	45
g. C_6H_5	$C_6H_5C \equiv CCH_2Br$	50	o. CH ₃	CH ₃ I	54.5
h. C ₆ H ₅	HC≡CCH ₂ Br	45			

Next step to obtain the hydrocarbons was desulfurization. As models for the desulfurization 2-cinnamylthiothiazoline (VII) and 2-phenylpropargylthiothiazoline (X) were examined by various method listed in Table 2.

Table 2

Desulfurization method

$c_6H_5-HC=CH-CH_2SN^S$] -	\rightarrow C ₆ H ₅ HC=CH-CH ₃	+	C6H5CH2-HC=CH2
VII	VIII		IX
с ₆ н ₅ -с≡с-сн ₂ s _≼ ^S) —	\longrightarrow C ₆ H ₅ -C=C-CH ₃	+	C6H5CH=C=CH2
Х	XI		XII

Compound	Method	Product ratio
VII	Zn in AcOH at r.t. ⁷⁾	VIII:IX = 78:22
VII	Al-Hg in 10% aq.THF at r.t. ⁸⁾	VIII:IX = 42:58
VII	Raney Ni in refluxing EtOH	VIII > 95%
х	Zn in AcOH at r.t.	XI:XII = 72:28
Х	Al in AcOH at 100 ⁰	XI:XII = 73:27
Х	Al-Hg in 10% aq.THF at r.t.	XI:XII = 42:58
Х	Raney Ni in refluxing EtOH	XI:XII = 86:14

The desulfurization of III $(R=C_6H_5)$ was also effected by treating with zinc dust in acetic acid⁷⁾ at room temperature for thirty minutes to afford in quantitative yield XIII and XIV (ratio 1:8), which were easily separated by silica-gel chromatography (solvent system : <u>n</u>-hexane) (Chart 3). The structures of XIII and XIV were identified as 1-phenyl-1,5-hexadiyne (XIII) and 1-phenyl-4,5-hexadien-1-yne (XIV), respectively, by following spectral data.

Chart 3

XIII: $IR \gamma_{max}$ (film) 3320, 2220 (w), 2100 (w), 1600, 755 cm⁻¹, UV λ_{max} (EtOH) 240 and 251 nm. NMR δ 2.03 (1H, t., J=2.3 Hz), 2.4 - 2.8 (4H), 7.15-7.50 (5H, arom.). M⁺ at m/e 154 ($C_{12}H_{10}$), 115 ($C_{6}H_{5}$ -C=C-CH₂). This compound was also obtained by the desulfurization of VIh (Table 1) with zinc dust in acetic acid. XIV: $IR \gamma_{max}$ (film) 2200 (w), 1960, 1600, 850, 755 cm⁻¹. UV λ_{max} (EtOH) 240 and 251 nm. NMR δ 2.95 - 3.30 (2H, =C-CH₂-C=), 4.66 - 4.95 (2H, =C= $\langle \frac{H}{H} \rangle$, 5.0 - 5.45 (1H, almost q.), 7.1 - 7.5 (5H, arom.). M⁺ at m/e 154 ($C_{12}H_{10}$), 115 ($C_{6}H_{5}$ -C=C-CH₂).

We are now continuing a study for a more effective dusulfurization.

Acknowledgement

The authors wish to express their deep gratitude to Mr. Y. Iwano for his assistance in the experimental work.

REFERENCES

- a. Part I: K. Hirai, H. Matsuda and Y. Kishida, Chem. Pharm. Bull. (Tokyo), 20, 97 (1972).
 - b. Part II: K. Hirai, H. Matsuda and Y. Kishida, Tetrahedron Letters, 4359 (1971).
- 2) NMR spectra were taken in CDCl_3 on Varian A-60 instrument and chemical shifts are reported in S, parts per million (ppm), downfield from TMS as an internal standard, s., singlet; d., doublet; t., triplet; q., quartet.
- 3) J.R. Geigy A.-G., Fr.P. 1395089 (1964) [C.A. <u>63</u>, 1791f]
- 4) Thin layer chromatography was carried out on Merck TLC-plates silica-gel F_{254} pre-coated, solvent system benzene:acetone=10:1.
- 5) Y. Leroux and R. Mantione, Tetrahedron Letters, 591 (1971).
- T. Mukaiyama, K. Narasaka, K. Maekawa and M. Furusato, Bull. Chem. Soc. Japan, <u>44</u>, 2285 (1971).
- 7) L.F. Fieser, J. Amer. Chem. Soc., 75, 4377 (1953).
- 8) E.J. Corey and M. Chaykovsky, J. Amer. Chem. Soc., 87, 1345 (1965).